Quantile Estimation of Non - Stationary Panel

نویسندگان

  • Songnian Chen
  • Shakeeb Khan
چکیده

We propose an estimation procedure for (semiparametric) panel data censored regression models in which the error terms may be subject to general forms of non-stationarity, thus permitting heteroscedasticity over time. The proposed estimator exploits a weak structural form imposed on the individual speciic eeect. This is in contrast to the estimators introduced in Honor e(1992) where the individual eeect was left completely unspeciied, but a stationarity assumption was imposed on the error terms. We adopt a two-stage procedure based on nonparametric quantile regression, similar to that used in Khan(1997a,b) and Chen and Khan(1998). An attractive feature about this approach is that it allows for very general forms of cross sectional conditional heteroscedasticity as well. Furthermore, the proposed procedure can be easily extended to estimate a more general class of censored panel data models which allow for time varying loading factors on the individual speciic eeects. The proposed estimators are shown to be p n-consistent and asymptotically normal under regularity conditions which are common in the literature. A small scale simulation study is conducted to illustrate both the nite sample properties of these estimators as well as the sensitivity of Honor e's estimator to non-stationary errors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantile Estimation of Non-Stationary Panel Data Censored Regression Models

We propose an estimation procedure for (semiparametric) panel data censored regression models in which the error terms may be subject to general forms of non-stationarity, thus permitting heteroscedasticity over time. The proposed estimator exploits a weak structural form imposed on the individual speci ̄c e®ect. This is in contrast to the estimators introduced in Honor¶e(1992) where the individ...

متن کامل

Bayesian Quantile Regression with Adaptive Lasso Penalty for Dynamic Panel Data

‎Dynamic panel data models include the important part of medicine‎, ‎social and economic studies‎. ‎Existence of the lagged dependent variable as an explanatory variable is a sensible trait of these models‎. ‎The estimation problem of these models arises from the correlation between the lagged depended variable and the current disturbance‎. ‎Recently‎, ‎quantile regression to analyze dynamic pa...

متن کامل

Two-pass Quantile Based Noise Spectrum Estimation

Noise spectrum estimation from a noisy speech signal forms a critical part of such applications as single channel speech enhancement and robust automatic speech recognition (ASR). The two-pass quantile based noise estimation algorithm presented in this paper has the ability to track slow changing non-stationary noise and obtains good estimates for various noise types over a wide range of SNR le...

متن کامل

Quantile Regression for Dynamic Panel Data with Fixed Effects

This paper studies estimation and inference in a quantile regression dynamic panel model with fixed effects. Panel data fixed effects estimators are typically biased in the presence of lagged dependent variables as regressors. To reduce the dynamic bias in the quantile regression fixed effects estimator I suggest the use of the instrumental variables quantile regression method of Chernozhukov a...

متن کامل

Quantile Regression Estimation of Panel Duration Models with Censored Data∗

This paper studies the estimation of quantile regression panel duration models. We allow for the possibility of endogenous covariates and correlated individual effects in the quantile regression models. We propose a quantile regression approach for panel duration models under conditionally independent censoring. The procedure involves minimizing l1 convex objective functions and is motivated by...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998